Respuesta :
C. x + y < 6
E. 7 x + 5 y ≤ 30
Step-by-step explanation:
The cost of cashews per pound = $7
The cost of almonds per pound = $5
Let x represent the number of pounds of cashews.
Let y represent the number of pounds of almonds
Now, the combined weight of the mixture is less than 6 pounds.
So, Weight of (Almonds + Cashews) < 6 pounds
or, x + y < 6 ...... (a)
Now, cost of x pounds of cashews = x ( Cots of 1 pound of cashews)
= x (7) = 7 x
Cost of y pounds of almonds = x ( Cots of 1 pound of almonds)
= y (5) = 5 y
So, the combined price of x pounds of cashews and y pounds of almonds
= 7 x + 5 y
Also, given the total cost of the mixture is not more than $30.
⇒ 7 x + 5 y ≤ 30 ..... (2)
Hence, form (1) and (2), the inequalities that represent the given situation are:
x + y < 6
7 x + 5 y ≤ 30
Answer: The inequalities that represent constraints for this situation are
x + y < 6
7x + 5y ≤ 30
Step-by-step explanation:
Let x represent the number of pounds of cashews.
Let y represent the number of pounds of almonds.
The employee wants to make less than 6 pounds of the mixture. This is expressed as
x + y < 6
Cashews cost $7 per pound, and almonds cost $5 per pound. The employee wants the total cost of the nuts used in the mixture to be not more than $30. This is expressed as
7x + 5y ≤ 30