A supermarket employee is making a mixture of cashews and almonds. Cashews cost $7 per pound, and almonds cost $5 per pound. The employee wants to make less than 6 pounds of the mixture and wants the total cost of the nuts used in the mixture to be not more than $30. Let x represent the number of pounds of cashews. Let y represent the number of pounds of almonds. Select all inequalities that represent constraints for this situation.
A. x + y ≤ 6
B. 7x + 5y < 6
C. x + y < 6
D. 7x + 5y > 30
E. 7x + 5y ≤ 30
F. x + y ≤ 30

Respuesta :

C.  x + y < 6

E.  7 x +  5 y  ≤ 30

Step-by-step explanation:

The cost of cashews per pound  = $7

The cost of almonds per pound  = $5

Let x represent the number of pounds of cashews.

Let y represent the number of pounds of almonds

Now, the combined weight of the mixture is less than 6 pounds.

So, Weight of (Almonds + Cashews) < 6 pounds

or,  x + y < 6   ...... (a)

Now, cost of x pounds of cashews  = x ( Cots of 1 pound of cashews)

=  x (7)  = 7 x

Cost of y pounds of almonds  = x ( Cots of 1 pound of almonds)

=  y (5)  = 5 y

So, the combined price of x pounds of cashews and y pounds of almonds

= 7 x +  5 y

Also, given the total cost of the mixture is not more than $30.

⇒ 7 x +  5 y  ≤ 30 ..... (2)

Hence, form (1) and (2), the inequalities that represent the given situation are:

x + y < 6

7 x +  5 y  ≤ 30

Answer: The inequalities that represent constraints for this situation are

x + y < 6

7x + 5y ≤ 30

Step-by-step explanation:

Let x represent the number of pounds of cashews.

Let y represent the number of pounds of almonds.

The employee wants to make less than 6 pounds of the mixture. This is expressed as

x + y < 6

Cashews cost $7 per pound, and almonds cost $5 per pound. The employee wants the total cost of the nuts used in the mixture to be not more than $30. This is expressed as

7x + 5y ≤ 30

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE