Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. x2 + y2 = 25 (a) Find dy/dt, given x = 3, y = 4, and dx/dt = 5. dy/dt = -3/4 Incorrect: Your answer is incorrect. (b) Find dx/dt, given x = 4, y = 3, and dy/dt = –5.

Respuesta :

Answer:

(a) [tex]\frac{dy}{dt}=-3\frac{3}{4}[/tex]

(b) [tex]\frac{dx}{dt}=3\frac{3}{4}[/tex]

Step-by-step explanation:

[tex]x^{2} +y^{2}=25[/tex]

Take [tex]\frac{d}{dt}[/tex] of of each term.

[tex]\frac{d}{dt}(x^{2})+\frac{d}{dt}(y^{2})=\frac{d}{dt}(25)\\\\(\frac{d}{dx}(x^{2})*\frac{dx}{dt}) +(\frac{d}{dy}(y^{2})*\frac{dy}{dt})=\frac{d}{dt}(25)\\\\2x\frac{dx}{dt} +2y\frac{dy}{dt} = 0\\\\[/tex]

For Question a

[tex]2y\frac{dy}{dt}=-2x\frac{dx}{dt}\\\\\frac{dy}{dt}=\frac{-2x\frac{dx}{dt}}{2y} \\\\\frac{dy}{dt}=-\frac{x}{y}\frac{dx}{dt}[/tex]

Given that x = 3, y = 4, and dx/dt = 5.

[tex]\frac{dy}{dt}=-\frac{3}{4}*5=-\frac{15}{4}\\ \\\frac{dy}{dt}=-3\frac{3}{4}[/tex]

For Question b

[tex]2x\frac{dx}{dt}=-2y\frac{dy}{dt}\\\\\frac{dx}{dt}=\frac{-2y\frac{dy}{dt}}{2x} \\\\\frac{dx}{dt}=-\frac{y}{x}\frac{dy}{dt}[/tex]

Given that x = 4, y = 3, and dx/dt = -5.

[tex]\frac{dx}{dt}=-\frac{3}{4}*-5=\frac{15}{4}\\ \\\frac{dx}{dt}=3\frac{3}{4}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE

Otras preguntas