The surface area of a cube is increasing at a rate of 151515 square meters per hour. At a certain instant, the surface area is 242424 square meters. What is the rate of change of the volume of the cube at that instant (in cubic meters per hour)

Respuesta :

Answer:

Therefore the volume of cube is increasing at a rate [tex]\frac{15}{2}[/tex] cubic meter per hour.

Step-by-step explanation:

Given that the surface area of a cube is increasing at a rate 15 square meter per hour.

i.e  [tex]\frac{dA}{dt}=15[/tex] square meter per hour.

A = the surface area of the cube

At a certain instant the surface area is 24 square meter.

At that time the side of the cube be x.(let)

The surface area of the cube is =6 x²

According to problem,

6 x² = 24

[tex]\Rightarrow x^2= \frac{24}{6}[/tex]

[tex]\Rightarrow x^2= 4[/tex]

⇒x= 2

At that time the side of the cube was 2 meter.

Again,

A= 6x²

Differentiating with respect to t

[tex]\frac{dA}{dt}= 6.2.x \frac{dx}{dt}[/tex]

[tex]\Rightarrow \frac{dA}{dt}= 12x \frac{dx}{dt}[/tex]

Putting [tex]\frac{dA}{dt}=15[/tex]

[tex]\Rightarrow 15 =12x \frac{dx}{dt}[/tex]

[tex]\Rightarrow \frac{dx}{dt}=\frac{15}{12x}[/tex]

[tex]\therefore \frac{dx}{dt}|_{x=2}=\frac{15}{12\times2}=\frac{5}{8}[/tex]

The volume of the cube is v = x³

v = x³

Differentiating with respect to t

[tex]\frac{dv}{dt}=3x^2\frac{dx}{dt}[/tex]

Putting [tex]\frac{dx}{dt}=\frac{5}{8}[/tex]

[tex]\frac{dv}{dt}=3x^2\times \frac{5}{8}[/tex]

[tex]\Rightarrow \frac{dv}{dt}|_{x=2}=3.2^2\times \frac{5}{8}[/tex]

               [tex]=\frac{15}{2}[/tex]

Therefore the volume of cube is increasing at a rate [tex]\frac{15}{2}[/tex] cubic meter per hour.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE