Respuesta :
Answer:
[tex]t=10.87s[/tex]
Explanation:
Angular acceleration constant - Angular kinematics apply
[tex]w=w_{i}+at\\[/tex]
The initial angular speed is
[tex]w_{i}=215\frac{rev}{min}(\frac{2\pi rad}{1rev} )(\frac{1min}{60.0s} ) \\w_{i}=22.5rad/s[/tex]
The time to stop (reach a final speed of wf=0) with α= -2.07 rad/s² is:
[tex]t=\frac{w_{f}-w_{i}}{\alpha } \\t=\frac{0-22.5rad/s}{-2.07rad/s^2}\\ t=10.87s[/tex]
Answer:
19.49 rev
Explanation:
Using,
ω₂² = ω₁²+2αθ.................................. Equation 1
Where ω₂ = Final angular velocity, ω₁ = Initial angular velocity, α = angular deceleration, θ = number of revolution.
make θ the subject of the equation
θ = (ω₂²- ω₁²)/2α............................. Equation 2
Given: ω₂ = 0 rad/s (comes to rest), ω₁ = 215 rev/min = rad/s, α = -2.07 rad/s²(deceleration) = -2.07(572.957) = -1186.02 rev/min²
Substitute into equation 2
θ = (0²-215²)/2(-1186.02)
θ = -46225/-2372.04
θ = 19.49 rev
Hence the wheel makes 19.49 rev