Answer:
(a) Magnetic force will be equal to [tex]4.384\times 10^{-13}N[/tex]
(b) Acceleration will be equal to [tex]=0.4818\times 10^{18}m/sec^2[/tex]
Explanation:
We have given magnetic field in a region of space B = 0.510 T
Velocity of electron moving [tex]v=7.6\times 10^6m/sec[/tex]
Angle between velocity and field [tex]\Theta =45^{\circ}[/tex]
Charge on electron [tex]q=1.6\times 10^{-19}C[/tex]
(A) Magnetic force will be equal to [tex]F=qvBsin\Theta[/tex]
So magnetic force [tex]F=1.6\times 10^{-19}\times 7.6\times 10^6\times 0.510\times sin45^{\circ}=4.384\times 10^{-13}N[/tex]
(B) Mass of electron [tex]m=9.1\times 10^{-31}kg[/tex]
According to newton's law we know that F = ma , here m is mass and a is acceleration
So acceleration [tex]a=\frac{F}{m}=\frac{4.384\times 10^{-13}}{9.1\times 10^{-31}}=0.4818\times 10^{18}m/sec^2[/tex]