Answer:
[tex]q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C[/tex]
Explanation:
Given that [tex]L=1H, R=5000\Omega, \ C=0.25\times10^{-6}F, \ \ E(t)=12V[/tex], we use Kirchhoff's 2nd Law to determine the sum of voltage drop as:
[tex]E(t)=\sum{Voltage \ Drop}\\\\L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{1}{C}q=E(t)\\\\\\\frac{d^2q}{dt^2}+5000\frac{dq}{dt}+\frac{1}{0.25\times10^{-6}}q=12\\\\\frac{d^2q}{dt^2}+5000\frac{dq}{dt}+4000000q=12\\\\m^2+5000m+4000000=0\\\\(m+4000)(m+1000)=0\\\\m=-4000 \ or \ m=-1000\\\\q_c=c_1e^{-4000t}+c_2e^{-1000t}[/tex]
#To find the particular solution:
[tex]Q(t)=A,\ Q\prime(t)=0,Q\prime \prime(t)=0\\\\0+0+4000000A=12\\\\A=3\times10^{-6}\\\\Q(t)=3\times10^{-6},\\\\q=q_c+Q(t)\\\\q=c_1e^{-4000t}+c_2e^{-1000t}+3\times10^{-6}\\\\q\prime=-4000c_1e^{-4000t}-1000c_2e^{-1000t}\\q\prime(0)=0\\\\-4000c_1-1000c_2=0\\c_1+c_2+3\times10^{-6}=0\\\\#solving \ simultaneously\\\\c_1=10^{-6},c_2=-4\times10^{-6}\\\\q=10^{-6}e^{-4000t}-4\times10^{-6}e^{-1000t}+3\times10^{-6}\\\\q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C[/tex]
Hence the charge at any time, t is [tex]q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C[/tex]