The cob Douglas production function is given by Q(K,L)=AK^1.4*L^1.6

Show that is production function is homogeneous of degree 3(i.e exhibits increasing returns to scale) and verify the
Euler's theorem

The cob Douglas production function is given by QKLAK14L16 Show that is production function is homogeneous of degree 3ie exhibits increasing returns to scale an class=

Respuesta :

Part a) The Cob Douglas production function is given as:

[tex]Q(K,L)=AK^{1.4} L^ {1.6 } .[/tex]

To show that this function is homogeneous with degree 3, we introduce be a parameter, t.

[tex]Q(tK,tL)=A(tK)^{1.4} (tL)^ {1.6 } .[/tex]

Using properties of exponents, we on tinder:

[tex]Q(tK,tL)=At^{1.4}K^{1.4} t^ {1.6 }L^ {1.6 } .[/tex]

This implies that:

[tex]Q(tK,tL)=t^{1.4} \times t^ {1.6 }(AK^{1.4} L^ {1.6 } )[/tex]

[tex]Q(tK,tL)=t^{1.4 + 1.6}(AK^{1.4} L^ {1.6 } )[/tex]

Simplify the exponent of t to get;

[tex]Q(tK,tL)=t^{3}(AK^{1.4} L^ {1.6 } )[/tex]

Hence the function is homogeneous with degree, 3

Part b) To verify Euler's Theorem, we must show that:

[tex]K\frac{\partial Q}{\partial \: K}+L\frac{\partial Q}{\partial \: L}=3AK^{1.4}L^{1.6}[/tex]

Verifying from the left:

[tex]K\frac{\partial Q}{\partial \: K}+L\frac{\partial Q}{\partial \: L} =K(1.4AK^{0.4} L^{1.6}) + L(1.6AK^{1.4} L^{0.6})[/tex]

[tex]K\frac{\partial Q}{\partial \: K}+L\frac{\partial Q}{\partial \: L} =1.4(AK^{1.4} L^{1.6}) + 1.6(AK^{1.4} L^{1.6})[/tex]

[tex]K\frac{\partial Q}{\partial \: K}+L\frac{\partial Q}{\partial \: L} =(1.4 + 1.6)(AK^{1.4} L^{1.6})[/tex]

[tex]K\frac{\partial Q}{\partial \: K}+L\frac{\partial Q}{\partial \: L} =3(AK^{1.4} L^{1.6})[/tex]

Q•E•D

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE