A 65.0 kg diver is 4.90 m above the water, falling at speed of 6.40 m/s. Calculate her kinetic energy as she hits the water. (Neglect air friction)

Respuesta :

Answer:

4452.5 J.

Explanation:

The diver have both kinetic and potential energy.

Ek = 1/2mv² ................. Equation 1

Where Ek = Kinetic Energy of the diver, m = mass of the diver, v = velocity of the diver.

Given: m = 65 kg, v = 6.4 m/s.

Substitute into equation 1

Ek = 1/2(65)(6.4²)

Ek = 1331.2 J.

Also,

Ep = mgh ............................ Equation 2

Where Ep =  Potential energy of the diver when its above the water, h = height of the diver above the water, g = acceleration due to gravity.

Given: m = 65 kg, h = 4.9 m, g = 9.8 m/s²

Substitute into equation 2.

Ep = 65(4.9)(9.8)

Ep = 3121.3 J.

Note: When she hits the water, the potential energy is converted to kinetic energy.

E = Ek+Ep

Where E = Kinetic energy of the diver when she hits the water.

E = 1331.2+3121.3

E = 4452.5 J.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE