A rectangular steel bar, with 8" x 0.75" cross-sectional dimensions, has equal and opposite moments applied to its ends.

a. Determine the yield moment assuming Fy = 50 ksi.
b. For the moment calculated in part a, calculate the strain in the cross-section 2 inches down from the top of the rectangle.
c. Determine the plastic moment assuming Fy = 50 ksi.

Respuesta :

Answer:

Part a: The yield moment is 400 k.in.

Part b: The strain is [tex]8.621 \times 10^{-4} in/in[/tex]

Part c: The plastic moment is 600 ksi.

Explanation:

Part a:

As per bending equation

[tex]\frac{M}{I}=\frac{F}{y}[/tex]

Here

  • M is the moment which is to be calculated
  • I is the moment of inertia given as

                         [tex]I=\frac{bd^3}{12}[/tex]

Here

  • b is the breath given as 0.75"
  • d is the depth which is given as 8"

                     [tex]I=\frac{bd^3}{12}\\I=\frac{0.75\times 8^3}{12}\\I=32 in^4[/tex]

  • y is given as

                     [tex]y=\frac{d}{2}\\y=\frac{8}{2}\\y=4"\\[/tex]

  • Force is 50 ksi

[tex]\frac{M_y}{I}=\frac{F_y}{y}\\M_y=\frac{F_y}{y}{I}\\M_y=\frac{50}{4}{32}\\M_y=400 k. in[/tex]

The yield moment is 400 k.in.

Part b:

The strain is given as

[tex]Strain=\frac{Stress}{Elastic Modulus}[/tex]

The stress at the station 2" down from the top is estimated by ratio of triangles as

                        [tex]F_{2"}=\frac{F_y}{y}\times 2"\\F_{2"}=\frac{50 ksi}{4"}\times 2"\\F_{2"}=25 ksi[/tex]

Now the steel has the elastic modulus of E=29000 ksi

[tex]Strain=\frac{Stress}{Elastic Modulus}\\Strain=\frac{F_{2"}}{E}\\Strain=\frac{25}{29000}\\Strain=8.621 \times 10^{-4} in/in[/tex]

So the strain is [tex]8.621 \times 10^{-4} in/in[/tex]

Part c:

For a rectangular shape the shape factor is given as 1.5.

Now the plastic moment is given as

[tex]shape\, factor=\frac{Plastic\, Moment}{Yield\, Moment}\\{Plastic\, Moment}=shape\, factor\times {Yield\, Moment}\\{Plastic\, Moment}=1.5\times400 ksi\\{Plastic\, Moment}=600 ksi[/tex]

The plastic moment is 600 ksi.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE