A simple random sample of 10 paired values (x,y) yields the following statistical calculations: ∑x=108, ∑y=138, ∑(x2) =1249, ∑(y2) =2280, ∑(xy) =1676. What is the linear correlation coefficient?

Respuesta :

The linear correlation coefficient is [tex]r=1.054[/tex]

Explanation:

It is given that [tex]$\Sigma x=108$[/tex],  [tex]$\Sigma y=138$[/tex] , [tex]$\Sigma x^{2} =1249$[/tex] , [tex]$\Sigma y^{2} =2280$[/tex] and [tex]$\Sigma(x y)=1676$[/tex]

Also, the random sample is [tex]n=10[/tex]

The formula to determine the correlation coefficient is given by

[tex]$r=\frac{n\left(\sum x y\right)-\left(\sum x\right)(\Sigma y)}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}$[/tex]

Substituting the values in the formula, we have,

[tex]$r=\frac{10(1676)-(108)(138)}{\sqrt{\left[10(1249)-(108)^{2}\right]\left[10(2280)-(138)^{2}\right]}}$[/tex]

Simplifying the values, we get,

[tex]$r=\frac{16760-14904}{\sqrt{\left[12490-11664\right]\left[22800-19044\right]}}$[/tex]

Subtracting the values in both numerator and denominator, we have,

[tex]$r=\frac{1856}{\sqrt{\left[826\right]\left[3756\right]}}$[/tex]

Multiplying the denominator,

[tex]$r=\frac{1856}{\sqrt{3102456}}$[/tex]

Simplifying, we have,

[tex]$r=\frac{1856}{1761.4}$[/tex]

Dividing, we get,

[tex]r=1.054[/tex]

Thus, the linear correlation coefficient is [tex]r=1.054[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE