Answer:
a) The value of the [tex]K_c[/tex] is 0.52.
b)Concentration of all species when equilibrium reestablishes:
[tex][CO_2] = 0.4748 M[/tex]
[tex][H_2] = 0.0198 M[/tex]
[tex] [CO] = 0.0752 M[/tex]
[tex][H_2O] =0.0652 M[/tex]
Explanation:
a) [tex]CO_2(g) + H_2(g)\rightleftharpoons CO(g) + H_2O(g)[/tex]
Equilibrium concentration of species :
[tex][CO] = 0.050 M, [H_2] = 0.045 M, [CO_2] = 0.086 M, and [H_2O] = 0.040 M[/tex]
The expression of equilibrium constant is given as :
[tex]\K_c=\frac{[CO][H_2O]}{[CO_2][H_2]}[/tex]
[tex]=\frac{0.050 M\times 0.040 M}{0.086 M\times 0.045 M}=0.517\approx 0.52 M[/tex]
b)
[tex]CO_2(g) + H_2(g)\rightleftharpoons CO(g) + H_2O(g)[/tex]
Initially:
0.50 M 0.045 M 0.050 M 0.040 M
At equilibrium ;
(0.50-x) M (0.045-x) M (0.050+x) M (0.040+x) M
[tex]K_c=\frac{[CO][H_2O]}{[CO_2][H_2]}[/tex]
[tex]0.52=\frac{(0.050+x) M\times (0.040+x) M}{(0.50-x) M\times (0.045-x) M}[/tex]
Solving fro x;
x = 0.0252
Concentration of all species when equilibrium reestablishes:
[tex][CO_2] = (0.50-x) M=(0.50-0.0252)M = 0.4748 M[/tex]
[tex][H_2] = (0.045-x) M= (0.045-0.0252) M=0.0198 M[/tex]
[tex] [CO] = (0.050+x) M=(0.050+0.0252)M = 0.0752 M[/tex]
[tex][H_2O] = (0.040+x) M=(0.040+0.0252) M=0.0652 M[/tex]