Respuesta :
Answer:
p_7kg,f=(25100-15000,38,500)m/s
Explanation:
In the collision the total momentum of the system is conserved so we only need to sum up the moments of our two rocks before and after the collision.
p_11kg,i+p_6kg,i=p_10kg,f+p_7kg,f
11kg(4250, −2950, 2500)m/s+6(−700, 2150, 3700)m/s=10kg(1500, 300, 1900)m/s+p_7kg,f
(46,750-32,450,27,500)kgm/s+(4,200-12,900,22,200)kgm/s=(15,000-3000,19,000)kgm/s+p_7kg,f
p_7kg,f=(46,750-32,450,27,500)kgm/s+(4,200-12,900,22,200)kgm/s-(15,000-3000,19,000)kgm/s
p_7kg,f=(25100-15000,38,500)m/s
The velocity of the other rock, whose mass is now 7 kg is :
‹ 3935.71, -3221.42, 4385.71› m/s
Calculating the velocity:
Given information:
before collision,
m₁ = 11 kg
m₂ = 6 kg
v₁ = ‹ 4250, −2950, 2500 › m/s
v₂ = ‹ −700, 2150, 3700 › m/s
after collision,
M₁ = 10kg
M₂ = 7kg
V₁ = ‹ 1500, 300, 1900 › m/s
V₂ = to be determined
According to the law of conservation of momentum:
m₁v₁ + m₂v₂ = M₁V₁ + M₂V₂
11׋ 4250, −2950, 2500 › + 6׋ −700, 2150, 3700 › = 10× ‹ 1500, 300, 1900 › + 7V₂
7V₂ = ‹ 27550,-22550,30700› kgm/s
V₂ = ‹ 3935.71, -3221.42, 4385.71› m/s
Learn more about collision:
https://brainly.com/question/13876829?referrer=searchResults