Find a parametrization of the ellipse centered at the origin in the xy-plane that has major diameter 16 along the x-axis, minor diameter 12 along the y-axis, and is oriented counter-clockwise. Your parametrization should make the point (8,0) correspond to t= 0.

x(t) =
y(t) =

(0 <= t <= 2π).

Respuesta :

Answer:

[tex]\left\{\begin{matrix} x(t)=8cos(t) \\ y(t)= 6sin(t)\end{matrix}\right.[/tex]

Step-by-step explanation:

1) Firstly, the basic relations when it comes to parametrization:

[tex]\left\{\begin{matrix}x=acos(t) & \\ y=bsin(t) & \end{matrix}\right.\\[/tex]

2) The given ellipse:

[tex]\frac{x^{2}}{8}+\frac{y^{2}}{6}=1\\[/tex]

3) Let's parametrize it:

[tex]\frac{(x-p)^{2}}{a^{2}}+\frac{(y-q)^{2}}{b^{2}}=1\\[/tex]

a, b for the radii, and p, and q since it is centered at the origin then p and q i equal to zero. a = [tex]a=\sqrt{8} , b=\sqrt{6}[/tex]

Then parametrized:

[tex]\left\{\begin{matrix} x(t)=8cos(t) \\ y(t)= 6sin(t)\end{matrix}\right.[/tex]

Lastly, on the right the parametric curve where (8,0) t=0

Ver imagen profantoniofonte
Ver imagen profantoniofonte
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE