A pendulum with a period of 1 s on Earth, where the acceleration due to gravity is g, is taken to another planet, where its period is 2 s. The acceleration due to gravity on the other planet is most nearly _____.

Respuesta :

Answer:

The acceleration due to gravity on the other planet is 1/4 of the acceleration due to gravity on earth

Explanation:

Using the formula;

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]       ......................equation 1

for earth we have;

[tex]1=2\pi \sqrt{\frac{l}{g_{e} } }[/tex]         ..................equation 2

for the other planet we have;

[tex]2=2\pi \sqrt{\frac{l}{g_{p} } }[/tex]       ...................equation 3

divide the equation 3 by equation 2;

[tex]\frac{2\pi \sqrt{\frac{l}{g_{p} } }}{2\pi \sqrt{\frac{l}{g_{e} } }} =\frac{2}{1}[/tex]

[tex]\frac{ \sqrt{\frac{l}{g_{p} } }}{\sqrt{\frac{l}{g_{e} } }} =\frac{2}{1}[/tex]

[tex]\sqrt{\frac{l}{g_{p} } }}*{ \sqrt{\frac{g_{e}}{l } }} =\frac{2}{1}[/tex]

[tex]\sqrt{\frac{g_{e} }{g_{p} } } =\frac{2}{1}[/tex]

[tex]\frac{g_{e} }{g_{p} }=\frac{2^{2} }{1^{2} }}[/tex]

[tex]\frac{g_{e} }{g_{p} }=4[/tex]

[tex]g_{p}=\frac{1}{4} g_{e}[/tex]

The gravitational acceleration on the other planet will be one-fourth of the Earth's gravitational acceleration.

The formula for the period of the pendulum,

[tex]T = 2 \pi \sqrt {\dfrac lg}[/tex]

Where,

[tex]T[/tex] - period

[tex]l[/tex]- length

[tex]g[/tex] - gravitational acceleration

On the earth,

[tex]1 = 2 \pi \sqrt {\dfrac l{g_e}}[/tex]......................1

On the other planet,

[tex]2 = 2 \pi \sqrt {\dfrac l{g_o}}[/tex].....................2

From equations 1 and 2,

[tex]\dfrac 21 = \frac { 2 \pi \sqrt {\dfrac l{g_e}}}{2 \pi \sqrt {\dfrac l{g_o}}}\\ 2^2 = \dfrac {g_e}{g_o}\\\\g_o = \dfrac 14 g_e[/tex]

Therefore, the gravitational acceleration on the other planet will be one-fourth of the Earth's gravitational acceleration.

To know more about gravitational acceleration.

https://brainly.com/question/14374981

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE