The quantity demanded per month, x, of a certain make of personal computer (PC) is related to the average unit price, p (in dollars), of PCs by the equationx = f(p) =1009810,000 − p2It is estimated that t mo from now, the average price of a PC will be given byp(t) =4001 +18t+ 200 (0 ≤ t ≤ 60)dollars. Find the rate at which the quantity demanded per month of the PCs will be changing 16 mo from now. (Round your answer to one decimal place.)

Respuesta :

Answer:

The value of dx/dt is [tex]\frac{100p}{9\sqrt{(810000-p^2)}}.\frac{1600}{\sqrt{t}\left(\sqrt{t}+8\right)^2}\\[/tex] while the rate of change of quantity demanded per month after 16 months is 18.7.

Step-by-step explanation:

From the given data the equation of quantity demanded for average price is given as  is given as

[tex]x=f(p)=\frac{100}{9}\sqrt{810000-p^2}[/tex]

The equation of average price p for a given value of t is given as

[tex]p(t)=\frac{400}{1+\frac{1}{8}\sqrt{t}}+200[/tex]

Now in order to determine the rate at which the quantity demanded will be changing is given as [tex]\frac{dx}{dt}[/tex]

This is found by using the chain rule as

[tex]\frac{dx}{dt}=\frac{dx}{dp}.\frac{dp}{dt}[/tex]

Now

[tex]\frac{dx}{dp}=\frac{d(\frac{100}{9}\sqrt{810000-p^2})}{dp}\\\frac{dx}{dp}=\frac{100}{9}\frac{d}{dp}[(810000-p^2)^{1/2}]\\\frac{dx}{dp}=\frac{100}{9}\frac{1}{2}[(810000-p^2)^{-1/2}]\frac{d}{dp}[(810000-p^2)]\\\frac{dx}{dp}=\frac{50}{9}[(810000-p^2)^{-1/2}](-2p)\\\frac{dx}{dp}=\frac{100p}{9\sqrt{(810000-p^2)}}[/tex]

Now

[tex]\\\frac{dp}{dt}=\frac{d(\frac{400}{1+\frac{1}{8}\sqrt{t}}+200)}{dt}\\\frac{dp}{dt}=\frac{d}{dt}\left(\frac{400}{1+\frac{1}{8}\sqrt{t}}+200\right)\\\frac{dp}{dt}=\frac{d}{dt}\left(\frac{400}{1+\frac{1}{8}\sqrt{t}}\right)+0\\\frac{dp}{dt}=400\frac{d}{dt}\left(\frac{1}{1+\frac{1}{8}\sqrt{t}}\right)\\\frac{dp}{dt}=400\frac{d}{du}\left(\left(1+\frac{1}{8}\sqrt{t}\right)^{-1}\right)\frac{d}{dt}\left(1+\frac{1}{8}\sqrt{t}\right)\\\frac{dp}{dt}=-\frac{1600}{\sqrt{t}\left(\sqrt{t}+8\right)^2}[/tex]

So now the value of dx/dt is given as

[tex]\frac{dx}{dt}=\frac{dx}{dp}.\frac{dp}{dt}\\\frac{dx}{dt}=\frac{100p}{9\sqrt{(810000-p^2)}}.\frac{1600}{\sqrt{t}\left(\sqrt{t}+8\right)^2}\\[/tex]

So the value of dx/dt is [tex]\frac{100p}{9\sqrt{(810000-p^2)}}.\frac{1600}{\sqrt{t}\left(\sqrt{t}+8\right)^2}\\[/tex]

Now for the time =16 months price is given as

[tex]p(t)=\frac{400}{1+\frac{1}{8}\sqrt{t}}+200\\p(16)=\frac{400}{1+\frac{1}{8}\sqrt{16}}+200\\p(16)=466.67[/tex]

Now the value of x is given as

[tex]\frac{dx}{dt}=\frac{100p}{9\sqrt{(810000-p^2)}}.\frac{1600}{\sqrt{t}\left(\sqrt{t}+8\right)^2}\\\\\frac{dx}{dt}=\frac{100*466.67}{9\sqrt{(810000-466.67^2)}}.\frac{1600}{\sqrt{16}\left(\sqrt{16}+8\right)^2}\\\frac{dx}{dt}=18.72[/tex]

So the rate of change of quantity demanded per month after 16 months is 18.72

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE