An imaginary element with BCC structure and has an atomic radius of 0.17 nm, with a molar mass of 56.08 g/mol. What is the density of this element in g/cc? hint: you will need Avogadro's number and you will need to convert the given radius to cm.

Respuesta :

Answer: The density of the given element is [tex]3.07g/cm^3[/tex]

Explanation:

To calculate the edge length, we use the relation between the radius and edge length for BCC lattice:

[tex]R=\frac{\sqrt{3}a}{4}[/tex]

where,

R = radius of the lattice = 0.17 nm

a = edge length = ?

Putting values in above equation, we get:

[tex]0.17=\frac{\sqrt{3}\times a}{4}\\\\a=\frac{0.17\times 4}{\sqrt{3}}=0.393nm[/tex]

To calculate the density of metal, we use the equation:

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell = 2  (BCC)

M = atomic mass of metal = 56.08 g/mol

[tex]N_{A}[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]

a = edge length of unit cell = [tex]0.393nm=3.93\times 10^{-8}cm[/tex]    (Conversion factor:  [tex]1cm=10^{7}nm[/tex]  )

Putting values in above equation, we get:

[tex]\rho=\frac{2\times 56.08}{6.022\times 10^{23}\times (3.93\times 10^{-8})^3}\\\\\rho=3.07g/cm^3[/tex]

Hence, the density of the given element is [tex]3.07g/cm^3[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE