If 6 J of work is needed to stretch a spring 10 from 10 cm to 12 cm and another 10 J is needed to stretch it from 12 cm to 14 cm. What is the natural length of the spring?

Respuesta :

Answer:

the natural length of the spring = 8cm

Explanation:

see the attached file

Ver imagen Olajidey
Ver imagen Olajidey

The natural length of the spring will be "8 cm".

According to Hooke's law,

  • [tex]F = K(x-L)[/tex]

Now,

→ [tex]6 = \int_{10}^{12} K(x-L)dx[/tex]

     [tex]= K[\frac{x^2}{2}-Lx ]_{10}^{12}[/tex]

     [tex]= K(22-2L)[/tex]...(eq. 1)

and,

→ [tex]10= \int_{12}^{14}K(x-L)dx[/tex]

       [tex]= L[\frac{x^2}{2} -Lx]_{12}^{14}[/tex]

       [tex]= K(26-2L)[/tex]...(eq. 2)  

By dividing "eq 2" by "eq. 1", we get

→            [tex]\frac{10}{3} = \frac{K(26-2L)}{K(22-2L)}[/tex]

               [tex]\frac{5}{3} = \frac{26-2L}{22-2L}[/tex]

 [tex]110-10L=78-6L[/tex]

   [tex]110-78 = 10L-6L[/tex]

             [tex]L = \frac{32}{4}[/tex]

                [tex]= 8 \ cm[/tex]

Thus the above approach is correct.    

Learn more about length here:

https://brainly.com/question/4545139

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE