Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x?

Answer:
[tex] x = \dfrac{5 \pm \sqrt{97}}{12} [/tex]
Step-by-step explanation:
5x = 6x^2 – 3
Subtract 5x from both sides.
0 = 6x^2 - 5x - 3
For the quadratic formula, we have a = 6, b = -5, and c = -3.
[tex] x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]
Now we substitute a, b, and c with the values shown above.
[tex] x = \dfrac{-(-5) \pm \sqrt{(-5)^2 - 4(6)(-3)}}{2(6)} [/tex]
[tex] x = \dfrac{5 \pm \sqrt{25 - (-72)}}{12} [/tex]
[tex] x = \dfrac{5 \pm \sqrt{97}}{12} [/tex]