Answer:
f is a quadratic function whose value changes depending on the value of x.
g is a constant function, that is, no matter the value of x, g always has the same value.
Step-by-step explanation:
f(x)
[tex]f(x) = x^{2}[/tex]
This is a quadratic function, that is, a parabola. For example
[tex]f(-2) = (-2)^{2} = 4[/tex]
[tex]f(-1) = (-1)^{2} = 1[/tex]
[tex]f(0) = (0)^{2} = 0[/tex]
[tex]f(1) = (1)^{2} = 1
[tex]f(2) = (2)^{2} = 4[/tex]
g(x)
[tex]g(x) = (\frac{1}{5})^{2} = \frac{1}{25} = 0.04[/tex]
This is a constant function, that is, no matter the value of x, we have that g(x) = 0.04. So
[tex]g(-2) = 0.04[/tex]
[tex]g(-1) = 0.04[/tex]
[tex]g(0) = 0.04[/tex]
[tex]g(1) = 0.04[/tex]
[tex]g(2) = 0.04[/tex]