Which expression is equivalent to x y Superscript two-ninths?
StartRoot x y Superscript 9 Baseline EndRoot
RootIndex 9 StartRoot x y squared EndRoot
x (StartRoot y Superscript 9 EndRoot)
x (RootIndex 9 StartRoot y squared EndRoot)

Respuesta :

Option D: [tex]x\sqrt[9]{y^2}[/tex] is the expression equivalent to [tex]xy^{\frac{2}{9}}[/tex]

Explanation:

Option A: [tex]\sqrt{xy^9}[/tex]

The expression can be written as [tex]({xy^9})^{\frac{1}{2}[/tex]

Applying exponent rule, we get,

[tex]x^{\frac{1}{2}} y^{\frac{9}{2}}[/tex]

Thus, the expression [tex]\sqrt{xy^9}[/tex] is not equivalent to the expression [tex]xy^{\frac{2}{9}}[/tex]

Hence, Option A is not the correct answer.

Option B: [tex]\sqrt[9]{xy^2}[/tex]

The expression can be written as [tex]({xy^2})^{\frac{1}{9}[/tex]

Applying exponent rule, we get,

[tex]x^{\frac{1}{9}} y^{\frac{2}{9}}[/tex]

Thus, the expression [tex]\sqrt[9]{xy^2}[/tex] is not equivalent to the expression [tex]xy^{\frac{2}{9}}[/tex]

Hence, Option B is not the correct answer.

Option C: [tex]x\sqrt{y^9}[/tex]

The expression can be written as [tex]x(y^9)^{\frac{1}{2} }[/tex]

Applying exponent rule, we get,

[tex]x y^{\frac{9}{2}}[/tex]

Thus, the expression [tex]x\sqrt{y^9}[/tex] is not equivalent to the expression [tex]xy^{\frac{2}{9}}[/tex]

Hence, Option C is not the correct answer.

Option D: [tex]x\sqrt[9]{y^{2} }[/tex]

The expression can be written as [tex]x(y^2)^{\frac{1}{9} }[/tex]

Applying exponent rule, we get,

[tex]xy^{\frac{2}{9}}[/tex]

Thus, the expression [tex]xy^{\frac{2}{9}}[/tex] is equivalent to the expression [tex]xy^{\frac{2}{9}}[/tex]

Hence, Option D is the correct answer.

Answer:

D for E2020.

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE