Which is equivalent to RootIndex 4 StartRoot 9 EndRoot Superscript one-half x?

92x 9 Superscript one-eighth x
StartRoot 9 EndRoot Superscript x RootIndex 5
StartRoot 9 EndRoot Superscript x

Respuesta :

Answer:

[tex]{9}^ {\frac{1}{8}x}[/tex]

Step-by-step explanation:

We want to find an equivalent expression for

[tex] (\sqrt[4]{9})^{ \frac{1}{2}x} [/tex]

To find an equivalent expression, we need to apply the following property of exponents:

[tex] {a}^{ \frac{m}{n}}=( \sqrt[n]{ {a}} )^{m} [/tex]

We let a=9, n=4 and m=½x

Then :

[tex] {9}^{ \frac{ \frac{1}{2}x}{4}}=( \sqrt[4]{ {9}} )^{ \frac{1}{2}x} [/tex]

Simplify the left hand side to get:

[tex]{9}^ {\frac{1}{8}x} =( \sqrt[4]{ {9}} )^{ \frac{1}{2}x} [/tex]

Therefore the correct answer is:

[tex]{9}^ {\frac{1}{8}x}[/tex]

Answer:

B

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE