X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to the incident rays, nd (a) the Compton shift at this angle, (b) the energy of the scattered x-ray, and (c) the energy of the recoiling electron.

Respuesta :

Answer:

a) [tex] \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)[/tex]

For this case we know the following values:

[tex] h = 6.63 x10^{-34} Js [/tex]

[tex] m_e = 9.109 x10^{-31} kg [/tex]

[tex] c = 3x10^8 m/s[/tex]

[tex] \theta = 37[/tex]

So then if we replace we got:

[tex] \Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm[/tex]

b) [tex] \lambda_0 = \frac{hc}{E_0}[/tex]

With [tex] E_0 = 300 k eV= 300000 eV[/tex]

And replacing we have:

[tex] \lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm[/tex]

And then the scattered wavelength is given by:

[tex] \lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm[/tex]

And the energy of the scattered photon is given by:

[tex] E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV[/tex]

c) [tex] E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV[/tex]

Explanation

Part a

For this case we can use the Compton shift equation given by:

[tex] \Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)[/tex]

For this case we know the following values:

[tex] h = 6.63 x10^{-34} Js [/tex]

[tex] m_e = 9.109 x10^{-31} kg [/tex]

[tex] c = 3x10^8 m/s[/tex]

[tex] \theta = 37[/tex]

So then if we replace we got:

[tex] \Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm[/tex]

Part b

For this cas we can calculate the wavelength of the phton with this formula:

[tex] \lambda_0 = \frac{hc}{E_0}[/tex]

With [tex] E_0 = 300 k eV= 300000 eV[/tex]

And replacing we have:

[tex] \lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm[/tex]

And then the scattered wavelength is given by:

[tex] \lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm[/tex]

And the energy of the scattered photon is given by:

[tex] E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV[/tex]

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

[tex] E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV[/tex]

Answer:

When scattered rays are detected

(a) the Compton shift at this angle

(b) the energy of the scattered x-ray

(c) the energy of the recoiling electron.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE