Respuesta :

Answer:

equation is always true (im sorry if I got this wrong)

Step-by-step explanation:

a brainly would be epic :0

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

          3*(38/23+2)-7*(2*38/23-4)-(4*(3*38/23-1))=0

Step by step solution :

Step  1  :

           38

Simplify   ——

           23

Equation at the end of step  1  :

      38            38              38

 ((3•(——+2))-(7•((2•——)-4)))-(4•((3•——)-1))  = 0

      23            23              23

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        1     1 • 23

   1 =  —  =  ——————

        1       23  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

114 - (23)     91

——————————  =  ——

    23         23

Equation at the end of step  2  :

      38            38          91

 ((3•(——+2))-(7•((2•——)-4)))-(4•——)  = 0

      23            23          23

Step  3  :

           38

Simplify   ——

           23

Equation at the end of step  3  :

      38            38       364

 ((3•(——+2))-(7•((2•——)-4)))-———  = 0

      23            23       23

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        4     4 • 23

   4 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

76 - (4 • 23)     -16

—————————————  =  ———

     23           23

Equation at the end of step  4  :

      38        -16   364

 ((3•(——+2))-(7•———))-———  = 0

      23        23    23

Step  5  :

           38

Simplify   ——

           23

Equation at the end of step  5  :

        38           -112     364

 ((3 • (—— +  2)) -  ————) -  ———  = 0

        23            23      23

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        2     2 • 23

   2 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions

38 + 2 • 23     84

———————————  =  ——

    23          23

Equation at the end of step  6  :

       84     -112     364

 ((3 • ——) -  ————) -  ———  = 0

       23      23      23

Step  7  :

Adding fractions which have a common denominator :

7.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

252 - (-112)     364

————————————  =  ———

     23          23

Equation at the end of step  7  :

 364    364

 ——— -  ———  = 0

 23     23

Step  8  :

Adding fractions which have a common denominator :

8.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

364 - (364)      0

———————————  =  ——

    23          23

Equation at the end of step  8  :

 0  = 0

Step  9  :

Equations which are always true :

9.1    Solve   0  = 0This equation is a tautology (Something which is always true)

Equation is alway true

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE