Answer:
x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or x = 30 ° + π/2 + 2 π n_2 for n_2 element Z
Step-by-step explanation:
Solve for x:
sin(2 x) = cos(x + 30 °)
Rewrite the right hand side using cos(θ) = sin(θ + π/2):
sin(2 x) = sin(30 ° + π/2 + x)
Take the inverse sine of both sides:
2 x = -30 ° + π/2 - x + 2 π n_1 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Add x to both sides:
3 x = -30 ° + π/2 + 2 π n_1 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Divide both sides by 3:
x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Subtract x from both sides:
Answer: x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or x = 30 ° + π/2 + 2 π n_2 for n_2 element Z