The ammonia molecule NH3 has a permanent electric dipole moment equal to 1.47 D, where 1 D = 1 debye unit = 3.34 × 10-30 C-m. Calculate the electric potential in volts due to an ammonia molecule at a point 53.1 nm away along the axis of the dipole. (Set V = 0 at infinity.)

Respuesta :

Answer:

[tex] V = \frac{1}{4\pi* 8.85x10^{-12}} \frac{4.9098x10^{-30} *1 }{(53.1x10^{-9} m)^2}=1.566 x10^{-5} V [/tex]

And we can express the last expression like this:

[tex] 1.566 x10^{-5} V *\frac{1 \mu V}{10^{-6} V}= 15.66 \mu V[/tex]

Explanation:

For this case we know the dipole moment given by 1.47 D. We know also that [tex]1D = 1 debyte = 3.34 x10^{-30} Cm [/tex]

And we need to calculate the electric potential due to an ammonia molecule at a point 53.1 nm away along the axis of the dipole

We can convert the dipole moment like this:

[tex] p = 1.47 D *\frac{3.34x10^{-30} Cm}{1 D}= 4.9098x10^{-30} Cm[/tex]

And the potentital at the desired point can be calculated with the following formula:

[tex] V = \frac{1}{4 \pi \epsilon} \frac{p cos \theta}{r^2}[/tex]

Where [tex] \epsilon = 8.85x10^{-12}[/tex] is a constant, [tex] r = 53.1 x10^{-9}m[/tex], and since we are assuming V=0 we can conclude that [tex] cos \theta \approx 1[/tex]

If we replace the info given we got:

[tex] V = \frac{1}{4\pi* 8.85x10^{-12}} \frac{4.9098x10^{-30} Cm *1 }{(53.1x10^{-9} m)^2}=1.566 x10^{-5} V [/tex]

And we can express the last expression like this:

[tex] 1.566 x10^{-5} V *\frac{1 \mu V}{10^{-6} V}= 15.66 \mu V[/tex]

And this would be our final answer for this case.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE