Respuesta :

The value of x is –7.

Solution:

Given expression:

[tex]$\left(\frac{1}{x+3}+\frac{6}{x^{2}+4 x+3}\right) \cdot \frac{x+3}{x+1}[/tex]

Let us factor [tex]x^2+4x+3[/tex].

[tex]x^2+4x+3=(x+1)(x+3)[/tex]

Substitute this in the fraction.

[tex]$\left(\frac{1}{x+3}+\frac{6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}[/tex]

To make the denominator same, multiply and divide the first term by (x +1).

[tex]$\left(\frac{(x+1)}{(x+1)(x+3)}+\frac{6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}[/tex]

Denominators are same, you can add the fractions.

[tex]$\left(\frac{x+1+6}{(x+1)(x+3)}\right) \cdot \frac{x+3}{x+1}[/tex]

[tex]$\frac{x+7}{(x+1)(x+3)} \cdot \frac{x+3}{x+1}[/tex]

Cancel the common term in the numerator and denominator.

[tex]$\frac{x+7}{x+1} \cdot \frac{1}{x+1}[/tex]

Multiply the fractions.

[tex]$\frac{x+7}{(x+1)^2}[/tex]

[tex]$\frac{x+7}{x^2+2x+1}[/tex]

The expression is simplified to one rational expression.

Suppose the expression is equal to 0.

[tex]$\frac{x+7}{x^2+2x+1}=0[/tex]

Do cross multiplication.

[tex]${x+7}=0\times (}{x^2+2x+1})[/tex]

Any number or variable multiplied by 0 gives 0.

[tex]${x+7}=0[/tex]

Subtract 7 from both sides of the equation.

[tex]${x+7-7}=0-7[/tex]

x = –7

The value of x is –7.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE