What is the rate of change for this function / careful / how can it be interpreted using the problem context?

Step-by-step explanation:
FORMATION OF TABLE FOR THE FUNCTION [tex]c\:=\:4t\:-\:150[/tex]
As t represents the temperature in degrees Fahrenheit and c represents the number of cricket chirps per minute.
Considering the function
[tex]c\:=\:4t\:-\:150[/tex]
when [tex]t = 40[/tex]
then [tex]c = 4(40) - 150 = 160 - 150 = 10[/tex]
when [tex]t = 50[/tex]
then [tex]c = 4(50) - 150 = 200 - 150 = 50[/tex]
when [tex]t = 60[/tex]
then [tex]c = 4(60) - 150 = 240 - 150 = 90[/tex]
when [tex]t = 70[/tex]
then [tex]c = 4(70) - 150 = 280 - 150 = 130[/tex]
when [tex]t = 80[/tex]
then [tex]c = 4(80) - 150 = 320 - 150 = 170[/tex]
when [tex]t = 90[/tex]
then [tex]c = 4(90) - 150 = 360 - 150 = 210[/tex]
when [tex]t = 100[/tex]
then [tex]c = 4(100) - 150 = 400 - 150 = 250[/tex]
So
Lets form the data table for this function based on the determined values
[tex]t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100[/tex]
[tex]c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250[/tex]
PART 1)
Considering the function
[tex]c\:=\:4t\:-\:150[/tex]
As we know that
when [tex]t = 60[/tex]
then [tex]c = 4(60) - 150 = 240 - 150 = 90[/tex]
The appropriate logic is that the speed at which cricket chirps is based on the temperature. The table table also indicates that as the temperature t increases, the number of cricket chirps also increases.
PART 2)
Considering the two points
[tex]\mathrm{Slope\:between\:two\:points}:\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(40,\:10\right),\:\left(x_2,\:y_2\right)=\left(50,\:50\right)[/tex]
[tex]m=\frac{50-10}{50-40}[/tex]
[tex]m=4[/tex]
It logically means for every increase of [tex]10[/tex] units in [tex]t[/tex] (temperature in degrees Fahrenheit), the value of [tex]c[/tex] (number of chirps) is increasing to [tex]40[/tex] units.
Thus, the rate of change will be [tex]4[/tex].
Part 3)
Considering the function
[tex]c\:=\:4t\:-\:150[/tex]
The data table for this function
[tex]t\:\:\:\:\:\:\:40\:\:\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:60\:\:\:\:\:\:\:\:\:\:70\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:\:\:100[/tex]
[tex]c\:\:\:\:\:\:\:\:10\:\:\:\:\:\:\:\:50\:\:\:\:\:\:\:\:\:\:\:90\:\:\:\:\:\:\:\:\:130\:\:\:\:\:\:\:\:\:170\:\:\:\:\:\:\:\:\:210\:\:\:\:\:\:\:\:\:\:250[/tex]
Putting [tex]t = 40[/tex] in the function brings the value of [tex]c[/tex] as [tex]10[/tex].
i.e.
[tex]c\:=\:4\left(40\right)\:-\:150=160=10[/tex]
Yes, it does make sense.
Its logical meaning is that at the start, when the value of [tex]t[/tex] was [tex]40[/tex] temperature in degrees Fahrenheit, then the value of [tex]c[/tex] (number of chirps per minute) was [tex]10[/tex].