Respuesta :
Answer:
[tex]n_{ca}=\frac{v_{ct}}{v_{ea}}[/tex] is the refractive index of ethyl alcohol with respect to carbon tetrachloride.
Explanation:
Given;
refractive index of ethyl alcohol, [tex]n_{ea}=1.389[/tex]
refractive index of carbon tetra-chloride, [tex]n_{ct}=1.436[/tex]
As we know that the refractive index of any medium is given as:
[tex]\rm n_{ea}=\frac{speed\ of\ light\ in\ the\ air}{speed\ of\ light\ in\ the\ medium} =\frac{c}{v_{ea}}[/tex] ........................(1)
&
[tex]n_{ct}=\frac{speed\ of\ light\ in\ the\ air}{speed\ of\ light\ in\ the\ carbon\ tetrachloride} =\frac{c}{v_{ct}}[/tex] ..............................(2)
Now, divide eq. 1 by eq. 2:
[tex]n_{ca}=\frac{c}{v_{ea}} \div \frac{c}{v_{ct}}[/tex]
[tex]n_{ca}=\frac{v_{ct}}{v_{ea}}[/tex] is the refractive index of ethyl alcohol with respect to carbon tetrachloride.
Answer:
The ratio of the velocity of carbon tetra chloride and ethyl alcohol is 0.96.
Explanation:
Given that,
Refractive index of ethyl alcohol n= 1.389
Refractive index of carbon tetra chloride n'= 1.436
We need to calculate the ratio of the velocity of carbon tetra chloride and ethyl alcohol
Using formula of velocity
[tex]\dfrac{v'}{v}=\dfrac{n}{n'}[/tex]
Where, n= refractive index of ethyl alcohol
n'=refractive index of carbon tetra chloride
Put the value into the formula
[tex]\dfrac{v'}{v}=\dfrac{1.389}{1.436}[/tex]
[tex]\dfrac{v'}{v}=\dfrac{1389}{1436}[/tex]
[tex]\dfrac{v'}{v}=0.96[/tex]
Hence, The ratio of the velocity of carbon tetra chloride and ethyl alcohol is 0.96.