A photon detector captures a photon with an energy of 4.29 ✕ 10−19 J. What is the wavelength, in nanometers, of the photon?

Respuesta :

Answer :  The wavelength of photon is, [tex]4.63\times 10^{2}nm[/tex]

Explanation : Given,

Energy of photon = [tex]4.29\times 10^{-19}J[/tex]

Formula used :

[tex]E=h\times \nu[/tex]

As, [tex]\nu=\frac{c}{\lambda}[/tex]

So, [tex]E=h\times \frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency of photon

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\lambda[/tex] = wavelength of photon  = ?

c = speed of light = [tex]3\times 10^8m/s[/tex]

Now put all the given values in the above formula, we get:

[tex]4.29\times 10^{-19}J=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{\lambda}[/tex]

[tex]\lambda=4.63\times 10^{-7}m=4.63\times 10^{-7}\times 10^9nm=4.63\times 10^{2}nm[/tex]

Conversion used : [tex]1nm=10^{-9}m[/tex]

Therefore, the wavelength of photon is, [tex]4.63\times 10^{2}nm[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE