(a) What is the minimum width of a single slit (in multiples of λ ) that will produce a first minimum for a wavelength λ ? (b) What is its minimum width if it produces 50 minima? (c) 1000 minima?

Respuesta :

Answer:

The minimum value of width for first minima is λ

The  minimum value of width for 50 minima is 50λ

The  minimum value of width for 1000 minima is 1000λ

Explanation:

Given that,

Wavelength = λ

For D to be small,

We need to calculate the minimum width

Using formula of minimum width

[tex]D\sin\theta=n\lambda[/tex]

[tex]D=\dfrac{n\lambda}{\sin\theta}[/tex]

Where, D = width of slit

[tex]\lambda[/tex] = wavelength

Put the value into the formula

[tex]D=\dfrac{n\lambda}{\sin\theta}[/tex]

Here, [tex]\sin\theta[/tex] should be maximum.

So. maximum value of [tex]\sin\theta[/tex] is 1

Put the value into the formula

[tex]D=\dfrac{1\times\lambda}{1}[/tex]

[tex]D=\lambda[/tex]

(b). If the minimum number  is 50

Then, the width is

[tex]D=\dfrac{50\times\lambda}{1}[/tex]

[tex]D=50\lambda[/tex]

(c). If the minimum number  is 1000

Then, the width is

[tex]D=\dfrac{1000\times\lambda}{1}[/tex]

[tex]D=1000\lambda[/tex]

Hence, The minimum value of width for first minima is λ

The  minimum value of width for 50 minima is 50λ

The  minimum value of width for 1000 minima is 1000λ

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE