A 0.45-mm-wide slit is illuminated by light of wavelength 590 nm. What is the width (in mm) of the central maximum on a screen 1.5 m behind the slit?

Respuesta :

Answer:

[tex] w = \frac{2(590x10^{-9}) (1.5m)}{0.45x10^{-3}}=3.93 x10^{-3} m[/tex]

And if we convert this into mm we got:

[tex] w= 3.93 x10^{-3} m *\frac{1000mm}{1 m}= 3.93 mm[/tex]

Step-by-step explanation:

For this case we have the following info givenL

[tex] \lambda = 590 nm = 590 x10^{-9}m [/tex] represent the wavelength

[tex] s = 0.45 mm *\frac{1m}{1000 mm}= 0.45x10^{-3} m[/tex] represent the width of the single slit

[tex] L = 1.5 m[/tex] represent the longitude

And we want to find the maximum width of the central maximum in mm, so we can use the following formula:

[tex] w s = 2 \lambda L[/tex]

And if we solve for w the width we got:

[tex] w = \frac{2\lambda L}{s}[/tex]

And replacing we got:

[tex] w = \frac{2(590x10^{-9}) (1.5m)}{0.45x10^{-3}}=3.93 x10^{-3} m[/tex]

And if we convert this into mm we got:

[tex] w= 3.93 x10^{-3} m *\frac{1000mm}{1 m}= 3.93 mm[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE