Which of the following represents the zeros of f(x) = 5x3 − 6x2 − 59x + 12? (2 points)

Group of answer choices

4, 3, 1 over 5

4, 3, − 1 over 5

4, −3, 1 over 5

4, −3, −1 over 5

Respuesta :

Answer:

4, −3, 1 over 5

Step-by-step explanation:

x is a zero of [tex]f(x)[/tex] if [tex]f(x) = 0[/tex]

In this problem, we have that:

[tex]f(x) = 5x^{3} - 6x^{2} - 59x + 12[/tex]

4, 3, 1 over 5

[tex]f(4) = 5*4^{3} - 6*4^{2} - 59*4 + 12 = 0[/tex]

So 4 is a zero of the function

[tex]f(3) = 5*3^{3} - 6*3^{2} - 59*3 + 12 = -84[/tex]

So 3 is not a zero of the function, and this option is incorrect

4, 3, − 1 over 5

[tex]f(3) = 5*3^{3} - 6*3^{2} - 59*3 + 12 = -84[/tex]

So 3 is not a zero of the function, and this option is incorrect

4, −3, 1 over 5

[tex]f(4) = 5*4^{3} - 6*4^{2} - 59*4 + 12 = 0[/tex]

So 4 is a zero of the function

[tex]f(-3) = 5*(-3)^{3} - 6*(-3)^{2} - 59*(-3) + 12 = 0[/tex]

So -3 is a zero of the function

[tex]f(\frac{1}{5}) = f(0.2) = 5*(0.2)^{3} - 6*(0.2)^{2} - 59*(0.2) + 12 = 0[/tex]

So 1 over 5 is a zero of the function

This is the correct answer.

4, −3, −1 over 5

[tex]f(4) = 5*4^{3} - 6*4^{2} - 59*4 + 12 = 0[/tex]

So 4 is a zero of the function

[tex]f(-3) = 5*(-3)^{3} - 6*(-3)^{2} - 59*(-3) + 12 = 0[/tex]

So -3 is a zero of the function

[tex]f(-\frac{1}{5}) = f(-0.2) = 5*(-0.2)^{3} - 6*(-0.2)^{2} - 59*(-0.2) + 12 = 23.52[/tex]

-1 over 5 is not a zero of the function

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE