Respuesta :
Answer:
45
Step-by-step explanation:
The different pairs of individual can be computed using rule of combination.
The combination is denotes as nCr.
nCr=n!/(r!(n-r)!)
In the given problem n=total candidates=10 and r= Selected candidates=2.
10C2=10!/(2!(10-2)!)
10C2=10*9*8!/(2!8!)
10C2=90/2
10C2=45
So, 45 different pairs of individuals can be selected.
Answer:
45
Step-by-step explanation:
Pairs that can be selected = 10C2
[tex]= \frac{10!}{2!(10-2)!}= \frac{10!}{2!*8!}\\ \\= \frac{10*9*8!}{2*1*8!}= \frac{10*9}{2*1}\\ \\= 5 * 9 = 45[/tex]