Answer : The heat capacity of the calorimeter is, [tex]6.72J/g^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of water = [tex]4.184J/g^oC[/tex]
[tex]c_2[/tex] = specific heat of calorimeter = ?
[tex]m_1[/tex] = mass of water = 108.7 g
[tex]m_2[/tex] = mass of calorimeter = 108.7 g
[tex]T_f[/tex] = final temperature of mixture = [tex]35.0^oC[/tex]
[tex]T_1[/tex] = initial temperature of water = [tex]60.2^oC[/tex]
[tex]T_2[/tex] = initial temperature of calorimeter = [tex]19.3^oC[/tex]
Now put all the given values in the above formula, we get
[tex](108.7g)\times (4.184J/g^oC)\times (35.0-60.2)^oC=-(108.7g)\times c_2\times (35.0-19.3)^oC[/tex]
[tex]c_2=6.72J/g^oC[/tex]
Therefore, the heat capacity of the calorimeter is, [tex]6.72J/g^oC[/tex]