Respuesta :

The maximum value the string tension can have before the can slip is 17.80 N

Let consider the mass of the can by making an assumption since the mass is not given.

  • assuming the mass of the can = 3.0 kg
  • assuming the angle formed = 40°
  • the coefficient of static friction [tex]\mathbf{\mu_s= 0.76}[/tex]  

By resolving the components of the angle;

[tex]\sum F_y = 0[/tex]

  • N + Tsin θ = mg
  • N = mg - Tsinθ   ------- (1)

The static friction [tex]\mathbf{F_s}[/tex] acting in the opposite direction is:

[tex]\mathbf{F_s = \mu_sN}[/tex]

[tex]\mathbf{F_s = \mu_s(mg - Tsin \theta)}[/tex]

Thus, the maximum value of the tension in the string before it slips can be expressed as:

[tex]\mathbf{Tcos \theta =F_s}[/tex]

[tex]\mathbf{T cos \theta= \mu_s(mg - Tsin \theta)}[/tex]

[tex]\mathbf{T cos \theta+ \mu_s Tsin \theta = \mu_s mg}[/tex]

[tex]\mathbf{T( cos \theta+ \mu_s sin \theta )= \mu_s mg}[/tex]

[tex]\mathbf{T=\dfrac{ \mu_s mg}{( cos \theta+ \mu_s sin \theta )}}[/tex]

[tex]\mathbf{T=\dfrac{(0.76 ) \times 3 \times 9.8}{( cos 40)+ ( 0.76 \times sin 40) )}}[/tex]

[tex]\mathbf{T=\dfrac{22.344}{0.7660+0.4885 }}[/tex]

[tex]\mathbf{T=\dfrac{22.344}{1.2545}}[/tex]

T = 17.80 N

Therefore, the maximum value the string tension can have before the can slip is 17.80 N

Learn more about the Tension here:

https://brainly.com/question/25383460?referrer=searchResults

Ver imagen ajeigbeibraheem
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE