Deimos completes one (circular) orbit of Mars in 1.26 days. The distance from Mars to Deimos is 2.35×107m. What is the centripetal acceleration of Deimos?

Respuesta :

Answer:

The centripetal acceleration of Deimos is [tex]0.077m/s^{2}[/tex].

Explanation:

The centripetal acceleration is defined as:

[tex]a = \frac{v^{2}}{r}[/tex]   (1)

Where v is the velocity of Deimos and r is the orbital distance.        

Notice that is necessary to determine the velocity first.

The speed of the Deimos can be found by means of the Universal law of gravity:

[tex]F = G\frac{M \cdot m}{r^{2}}[/tex]  (2)

Then, replacing Newton's second law in equation 2 it is gotten:

[tex]m\cdot a = G\frac{M \cdot m}{r^{2}}[/tex]  (3)

However, a is the centripetal acceleration since Deimos almost describes a circular motion around Mars:

[tex]a = \frac{v^{2}}{r}[/tex]  (4)

Replacing equation 4 in equation 3 it is gotten:

[tex]m\frac{v^{2}}{r} = G\frac{M \cdot m}{r^{2}}[/tex]

[tex]m \cdot v^{2} = G \frac{M \cdot m}{r^{2}}r[/tex]

[tex]m \cdot v^{2} = G \frac{M \cdot m}{r}[/tex]

[tex]v^{2} = G \frac{M \cdot m}{rm}[/tex]

[tex]v^{2} = G \frac{M}{r}[/tex]

[tex]v = \sqrt{\frac{G M}{r}}[/tex]  (5)

Where v is the orbital speed, G is the gravitational constant, M is the mass of Mars, and r is the orbital radius.    

[tex]v = \sqrt{\frac{(6.67x10^{-11}N.m^{2}/kg^{2})(6.39x10^{23}kg)}{2.35x10^{7}m}}[/tex]

[tex]v = 1346m/s[/tex]

Finally, equation 4 can be used:

[tex]a = \frac{(1346m/s)^{2}}{2.35x10^{7}m}[/tex]

[tex]a = 0.077m/s^{2}[/tex]

Hence, the centripetal acceleration of Deimos is  [tex]0.077m/s^{2}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE