Answer: The total heat required for the conversion process is 1228.5 J
Explanation:
The processes involved in the given problem are:
[tex]1.)Ag(s)(25^oC,298K)\rightarrow Ag(s)(962^oC,1235K)\\2.)Ag(s)(962^oC,1235K)\rightarrow Ag(l)(962^oC,1235K)[/tex]
To calculate the amount of heat absorbed, we use the equation:
[tex]q_1=m\times C_{p,l}\times (T_{2}-T_{1})[/tex]
where,
[tex]q_1[/tex] = amount of heat absorbed = ?
[tex]C_{p,s}[/tex] = specific heat capacity = 0.235 J/g.K
m = mass of silver = 9.70 g
[tex]T_2[/tex] = final temperature = 1235 K
[tex]T_1[/tex] = initial temperature = 298 K
Putting all the values in above equation, we get:
[tex]q_1=9.70g\times 0.235J/g.K\times (1235-298)K=213.6J[/tex]
To calculate the amount of heat released, we use the equation:
[tex]q_2=m\times L_f[/tex]
where,
[tex]q_2[/tex] = amount of heat absorbed = ?
m = mass of silver = 9.70 g
[tex]L_f[/tex] = latent heat of fusion = 11.3 kJ/mol = [tex]\frac{11300J/mol}{108g/mol}=104.63J/g[/tex] (Conversion factor: 1 kJ = 1000 J; Molar mass of silver = 108 g/mol)
Putting all the values in above equation, we get:
[tex]q_2=9.70g\times 104.63J/g=1014.9J[/tex]
Total heat required for the conversion = [tex]q_1+q_2[/tex]
Total heat required for the conversion = [tex][213.6+1014.9]J=1228.5J[/tex]
Hence, the total heat required for the conversion process is 1228.5 J