Answer:
[tex] \bar X= \frac{20*20 +12*30 +7*10 +5*15 +6*10}{20+30+10+15+10}[/tex]
[tex] \bar X = \frac{965}{85}= 11.353[/tex]
Step-by-step explanation:
For this case we have the following data:
Days to Maturity Dollar Value $ Millions)
20 20
12 30
7 10
5 15
6 10
For this case the definition of weigthed mean is given by:
[tex] \bar X = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}[/tex]
Where [tex] w_i , i=1,...,n[/tex] represent the weight of each value and [tex] x_i , i=1,...,n[/tex] represent the observations (Days to maturity)
Our interest is the number of days so then our weighting variable would be the dollar Value, so then we can find the weighted mean like this:
[tex] \bar X= \frac{20*20 +12*30 +7*10 +5*15 +6*10}{20+30+10+15+10}[/tex]
[tex] \bar X = \frac{965}{85}= 11.353[/tex]