The normal boiling point of bromine is 58.8°C, and its enthalpy of vaporization is 30.91 kJ/mol. What is the approximate vapor pressure of bromine at 10.0°C?

Respuesta :

Answer : The vapor pressure of bromine at [tex]10.0^oC[/tex] is 0.1448 atm.

Explanation :

The Clausius- Clapeyron equation is :

[tex]\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})[/tex]

where,

[tex]P_1[/tex] = vapor pressure of bromine at [tex]10.0^oC[/tex] = ?

[tex]P_2[/tex] = vapor pressure of propane at normal boiling point = 1 atm

[tex]T_1[/tex] = temperature of propane = [tex]10.0^oC=273+10.0=283.0K[/tex]

[tex]T_2[/tex] = normal boiling point of bromine = [tex]58.8^oC=273+58.8=331.8K[/tex]

[tex]\Delta H_{vap}[/tex] = heat of vaporization = 30.91 kJ/mole = 30910 J/mole

R = universal constant = 8.314 J/K.mole

Now put all the given values in the above formula, we get:

[tex]\ln (\frac{1atm}{P_1})=\frac{30910J/mole}{8.314J/K.mole}\times (\frac{1}{283.0K}-\frac{1}{331.8K})[/tex]

[tex]P_1=0.1448atm[/tex]

Hence, the vapor pressure of bromine at [tex]10.0^oC[/tex] is 0.1448 atm.

The vapor pressure of bromine at  10.0°C is 0.16 atm.

Using the formula;

ln(P2/P1) = -ΔHvap/R (1/T2 - 1/T1)

P2 = ?

P1 = 1 atm

ΔHvap = 30.91 kJ/mol

T2 = 10.0°C + 273 = 283 K

T1 = 58.8°C + 273 = 331.8 K

Substituting values;

ln(P2/1) = -30.91 × 10^3/8.314 JK-1 mol-1 (1/283 K - 1/331.8 K)

ln(P2/1) = -1.859

P2 = e^-1.859

P2 = 0.16 atm

Learn more: https://brainly.com/question/24381583

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE