Triangle KNM is isosceles, where angle N is the vertex.

Isosceles triangle K N M is shown. N L is a perpendicular bisector of angle K N M. Angle K N L is (5 x + 10) degrees and angle L N M is (6 x minus 1) degrees.

What is the measure of angle K?
11º
25º
50º
65º

Respuesta :

frika

Answer:

25°

Step-by-step explanation:

In isosceles triangle KNM, NL is a perpendicular bisector of angle KNM.

This means

[tex]m\angle KNL=m\angle LNM[/tex]

Since

[tex]m\angle KNL=(5x+10)^{\circ}\\ \\m\angle LNM=(6x-1)^{\circ},[/tex]

you have

[tex]5x+10=6x-1\\ \\5x-6x=-1-10\\ \\-x=-11\\ \\x=11[/tex]

No, find the measure of angles KNL and LNM:

[tex]m\angle KNL=(5\cdot 11+10)^{\circ}=65^{\circ}\\ \\m\angle LNM=(6\cdot 11-1)^{\circ}=65^{\circ}[/tex]

and the measure of angle KNM is

[tex]m\angle KNM=m\angle KNL+m\angle LNM=65^{\circ}+65^{\circ}=130^{\circ}[/tex]

Angles adjacent to the base of isosceles triangle are congruent. The sum of the measures of all interior angles is 180°, then

[tex]m\angle K=\dfrac{1}{2}(180^{\circ}-130^{\circ})=25^{\circ}[/tex]

Answer:

25 Degrees

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE