Respuesta :

The perimeter of ΔXYZ is 126 units.

Solution:

Given ΔPQR [tex]\sim[/tex] ΔXYZ.

In ΔPQR,

PQ = 5, QR = 10, PR = 6

In ΔXYZ,  XY = 30

Perimeter of ΔPQR = PQ + QR + PR

                                = 5 + 10 + 6

                                = 21

Perimeter of ΔPQR = 21

To find the perimeter of ΔZYZ:

If two triangles are similar then the ratio of the perimeters of two similar triangles is same as the ratio of their corresponding sides.

[tex]$\Rightarrow\frac{PQ}{XY} = \frac{\text{Perimeter of} \Delta PQR}{\text{Perimeter of} \Delta XYZ}[/tex]

[tex]$\Rightarrow\frac{5}{30} = \frac{21}{\text{Perimeter of} \Delta XYZ}[/tex]

Do cross multiplication, we get

⇒ 5 × Perimeter of ΔXYZ = 30 × 21

⇒ 5 × Perimeter of ΔXYZ = 630

Divide by 5 on both sides of the equation.

Perimeter of ΔXYZ = 126

Hence the perimeter of ΔXYZ is 126 units.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE