Which expression is equivalent to log2 9x^3?

log Subscript 2 Baseline 9 + 3 log Subscript 2 Baseline x

log Subscript 2 Baseline x + 3 log Subscript 2 Baseline 9

3 log Subscript 2 Baseline x minus log Subscript 2 Baseline 9

3 log Subscript 2 Baseline 9 minus log Subscript 2 Baseline x

ANSWER= A- log2^9+3log2x

Respuesta :

Answer:

Option 1 - [tex]\log_{2}(9 {x}^{3} )=\log_{2}(9 ) +3 \log_{2}( {x} )[/tex] - log Subscript 2 Baseline 9 + 3 log Subscript 2 Baseline x

Step-by-step explanation:

Given : Expression [tex]\log_2(9x^3)[/tex]

To find : Which expression is equivalent to given expression ?

Solution :

Expression [tex]\log_2(9x^3)[/tex]

Applying logarithmic property, [tex]\log_{a}( MN ) = \log_{a}( M) + \log_{a}( N )[/tex]

[tex]\log_{2}(9 {x}^{3} ) = \log_{2}(9 ) + \log_{2}( {x}^{3} )[/tex]

Using property, [tex]\log_{a}( { M}^{n} ) =n \log_{a}( { M})[/tex]

[tex]\log_{2}(9 {x}^{3} )=\log_{2}(9 ) +3 \log_{2}( {x} )[/tex]

i.e. log Subscript 2 Baseline 9 + 3 log Subscript 2 Baseline x

Therefore, option 1 is correct.

Answer:

log2^9+3log2x

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE