Molybdenum (Mo) has a body centered cubic unit cell. The density of Mo is 10.28 g/cm3. Determine (a) the edge length of the unit cell and (b) the radius of a Mo atom.

Respuesta :

Answer:

For a: The edge length of the unit cell is 314 pm

For b: The radius of the molybdenum atom is 135.9 pm

Explanation:

  • For a:

To calculate the edge length for given density of metal, we use the equation:

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density = [tex]10.28g/cm^3[/tex]

Z = number of atom in unit cell = 2  (BCC)

M = atomic mass of metal (molybdenum) = 95.94 g/mol

[tex]N_{A}[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]

a = edge length of unit cell =?

Putting values in above equation, we get:

[tex]10.28=\frac{2\times 95.94}{6.022\times 10^{23}\times (a)^3}\\\\a^3=\frac{2\times 95.94}{6.022\times 10^{23}\times 10.28}=3.099\times 10^{-23}\\\\a=\sqrt[3]{3.099\times 10^{-23}}=3.14\times 10^{-8}cm=314pm[/tex]

Conversion factor used:  [tex]1cm=10^{10}pm[/tex]  

Hence, the edge length of the unit cell is 314 pm

  • For b:

To calculate the edge length, we use the relation between the radius and edge length for BCC lattice:

[tex]R=\frac{\sqrt{3}a}{4}[/tex]

where,

R = radius of the lattice = ?

a = edge length = 314 pm

Putting values in above equation, we get:

[tex]R=\frac{\sqrt{3}\times 314}{4}=135.9pm[/tex]

Hence, the radius of the molybdenum atom is 135.9 pm

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE