Answer:
Part A:
Number of contracts=[tex]\frac{1.2*20,000,000}{270000}[/tex]
Number of contracts=88.889≅ 89 contracts.
The hedge that minimizes risk is to short 88 contracts
Part B:
Number of contracts=[tex]\frac{(0.6-1.2)*20,000,000}{270,000}=-44.44[/tex]
Number of contracts≅-44
The company should short 44 futures contracts.
Explanation:
Part A:
The formula we are going to use is:
Number of contracts=[tex]\frac{\beta*Portfolio\ Value}{Futures\ Value}[/tex]
Future Value=Index futures*Multiplier
Future Value=1080*$250
Future Value=$270,000
Number of contracts=[tex]\frac{1.2*20,000,000}{270000}[/tex]
Number of contracts=88.889≅ 89 contracts.
The hedge that minimizes risk is to short 88 contracts
Part B:
Number of contracts=[tex]\frac{(\beta'-\beta)*Portfolio\ Value}{Futures\ Value}[/tex]
where:
[tex]\beta'[/tex] is the new value=0.6
[tex]\beta[/tex]=1.2
Future Value=$270,000 (Calculated above)
Number of contracts=[tex]\frac{(0.6-1.2)*20,000,000}{270,000}=-44.44[/tex]
Number of contracts≅-44
The company should short 44 futures contracts