Answer:
The man will made 15 drawins for 31,468 at their retirement age.
Explanation:
We solve for the future value of the annuity-due (deposits at the beginning)
[tex]C \times \frac{(1+r)^{time} -1}{rate}(1+r) = FV\\[/tex]
C 1,000.00
time 25
rate 0.04
[tex]1000 \times \frac{(1+0.04)^{-25} -1}{0.04}(1+0.04) = PV\\[/tex]
FV $375.1168
Now, we calcualte the amount of the withdrawals considering the new rate:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate}(1+r) = C\\[/tex]
[tex]375.116802253964 \div \frac{1-(1+0.035)^{-15} }{0.035}(1+0.035) = C\\[/tex]
C $ 31.468