An insulating sphere is 8.00 cm in diameter and carries a 6.50 µC charge uniformly distributed throughout its interior volume. Calculate the charge enclosed by a concentric spherical surface with the following radius.(a) r = 1.00 cm(b) r = 6.50 cm

Respuesta :

Explanation:

(a)   Formula to calculate the density is as follows.

            [tex]\rho = \frac{Q}{\frac{4}{3}\pi a^{3}}[/tex]

                       = [tex]\frac{6.50 \times 10^{-6}}{\frac{4}{3} \times 3.14 \times (0.04)^{3}}[/tex]

                     = [tex]2.42 \times 10^{-2} C/m^{3}[/tex]

Now, calculate the charge as follows.

            [tex]q_{in} = \rho(\frac{4}{3} \pi r^{3})[/tex]

                      = [tex]2.42 \times 10^{-2} C/m^{3} \times 4.1762 \times (0.01)^{3}[/tex]

                      = [tex]10.106 \times 10^{-8}[/tex] C

or,                   = 101.06 nC

(b)  For r = 6.50 cm, the value of charge will be calculated as follows.

                [tex]q_{in} = \frac{Q}{\frac{4}{3}\pi a^{3}}[/tex]

                          = [tex]\frac{6.50 \times 10^{-6}}{\frac{4}{3} \times 3.14 \times (0.065)^{3}}[/tex]

                          = 7.454 [tex]\mu C[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE