Suppose that W1 is a random variable with mean μ and variance σ21 and W2 is a random variable with mean μ and variance σ2. From Example 5.4.3, we know that cW1 + (1 − c)W2 is an unbiased estimator of μ for any constant c > 0. If W1 and W2 are independent, for what value of c is the estimator cW1 + (1 − c)W2 most efficient?

Respuesta :

Answer:

Step-by-step explanation:

The concept of variance in random variable is applied in solving for the value of c for the estimator cW1 + (1 − c)W2 to be most efficient. Appropriate differentiation of the estimator with respect to c will give the value of c when the result is at minimum.

The detailed analysis and step by step approach is as shown in the attachment.

Ver imagen olumidechemeng
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE