Respuesta :
Answer:
9.027 Ω
Explanation:
Using,
R = R₀(1+αΔt)
R = R₀(1+α[t₂-t₁]).......................... Equation 1
Where R = the value of the resistance at the final temperature, R₀ = the value of the resistance at the initial temperature, α = Temperature coefficient of resistance, t₂ = Final temperature, t₁ = Initial temperature.
Given: R₀ = 8.6 Ω, t₂ = 42 °C, t₁ = 29 °C
Constant : 0.003819/°C
Substitute into equation 1
R = 8.6(1+0.003819[42-29])
R = 9.027 Ω.
Hence the resistance = 9.027 Ω
Answer:
9.02Ω
Explanation:
The resistivity of a conductor increases as temperature increases. In this case, silver, which is a great conductor, will increase its resistivity linearly over a range of increasing temperatures . The relationship between resistance(R) and temperature(T) is given as;
R = R₀ (1 + α(T - T₀)) --------------(i)
where;
R and R₀ are the final and initial resistances of the material (silver in this case)
α = temperature coefficient of resistivity of the material (silver) = 0.0038/°C
T and T₀ are the final and initial temperatures.
From the question;
R₀ = 8.60Ω
T₀ = 29.0°C
T = 42.0°C
Substitute these values into equation (i);
R = 8.60 (1 + 0.0038(42.0 - 29.0))
R = 8.60(1 + 0.0038(13))
R = 8.60(1 + 0.0494)
R = 8.60(1.0494)
R = 9.02Ω
Therefore, the resistance at 42.0°C is 9.02Ω