A conducting sphere with a radius of 0.25 m has a total charge of 5.90 mC. A particle with a charge of −1.70 mC is initially 0.35 m from the sphere's center and is moved to a final position 0.48 m from the sphere's center.

a. What is the difference in electric potential between the particle's final and initial positions, ΔV = Vf − Vi?
b. What is the change in the system's electric potential energy?

Respuesta :

Explanation:

The given data is as follows.

     [tex]r_{1}[/tex] = 0.25 m,    q = 5.90 mC = [tex]5.90 \times 10^{-3} C[/tex]

     [tex]r_{2}[/tex] = 0.35 m,    q = 1.70 mC = [tex]1.70 \times 10^{-3} C[/tex]

(a)  Now, we will calculate the electric potential as follows.

             V = [tex]k \frac{q}{r}[/tex]

First, we will calculate the initial and final electric potential as follows.

    [tex]V_{i} = 9 \times 10^{9} \times \frac{5.90 \times 10^{-3}}{0.25 m}[/tex]      

                = [tex]212.4 \times 10^{6}[/tex]

or,             = [tex]2.124 \times 10^{8}[/tex]

[tex]V_{f} = 9 \times 10^{9} \times \frac{1.70 \times 10^{-3}}{0.35 m}[/tex]      

                = [tex]43.71 \times 10^{6}[/tex]

or,             = [tex]4.371 \times 10^{8}[/tex]

Hence, the value of change in electric potential is as follows.

              [tex]\Delta V = V_{f} - V_{i}[/tex]

                         = [tex]4.371 \times 10^{8} - 2.124 \times 10^{8}[/tex]

                        = [tex]2.247 \times 10^{8}[/tex] V

Therefore, the difference in electric potential energy is [tex]2.247 \times 10^{8}[/tex] V.

(b)  Now, we will calculate the potential energy as follows.

                P.E = qV

                    = [tex]-1.70 \times 10^{-3}C \times 2.247 \times 10^{8}[/tex] V

                    = [tex]-3.8199 \times 10^{5}[/tex]

Therefore, the change in the system's electric potential energy is [tex]-3.8199 \times 10^{5}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE