Respuesta :
Answer:
The mass of glucose that contains a million [tex]1.0\times 10^6[/tex] carbon atoms is [tex]4.98\times 10^{-17} g[/tex].
Explanation:
Number of carbon atoms = [tex]1.0\times 10^6 [/tex]
1 molecule of glucose has 6 carbon atoms, then [tex]1.01\times 10^6 [/tex] will be in N molecules of glucose:
[tex]N=\frac{1.0\times 10^6}{6}[/tex]molecules of glucose
1 mole = [tex]N_A=6.022\times 10^{23} molecules[/tex]
Moles of glucose = n
[tex]N=n\times N_A[/tex]
[tex]n=\frac{N}{N_A}=\frac{\frac{1.0\times 10^6}{6}}{6.022\times 10^{23}}[/tex]
[tex]n=2.768\times 10^{-19} moles[/tex]
Mass of [tex]2.768\times 10^{-19} [/tex] moles of glucose;
[tex]2.768\times 10^{-19} mol\times 180=4.9817\times 10^{-17} g\approx 4.98\times 10^{-17} g[/tex]
Calculate the mass of glucose C₆H₁₂O₆ that contains a million (1.0 × 10⁶) carbon atoms. Be sure your answer has a unit symbol if necessary, and round it to 2 significant digits.
The mass of glucose that contains a million carbon atoms is 5.04 × 10⁻⁷ g.
1 molecule of glucose contains 6 carbon atoms. The number of molecules of glucose that contain 1.0 × 10⁶ carbon atoms are:
[tex]1.0 \times 10^{6}\ C\ atoms \times \frac{1\ Glucose\ molecule}{6\ C\ atoms} = 1.7 \times 10^{5} \ Glucose\ molecule[/tex]
We will convert molecules into moles using Avogadro's number: there are 6.02 × 10²³ molecules in 1 mole of molecules.
[tex]1.7 \times 10^{5} \ molecule \times \frac{1mol}{6.02 \times 10^{23} \ molecule} = 2.8 \times 10^{-19} \ mol[/tex]
We will convert moles to mass using the molar mass of glucose (180.16 g/mol).
[tex]2.8 \times 10^{-19} \ mol \times \frac{180.16g}{1mol} =5.04 \times 10^{-7} g[/tex]
The mass of glucose that contains a million carbon atoms is 5.04 × 10⁻⁷ g.
You can learn more about Avogadro's number here: https://brainly.com/question/13302703